Modules and Namespaces in Jason'

Gustavo Ortiz-Herndandez, Jomi F. Hijbner, and Rafael H. Bordini

Jully 2016

Introduction

Concepts
Implementation

Namespace Prefix

Loading
Environment interaction

Operations

Unification

Examples
Factorial

Contract Net Protocol

Properties
Open Tssues
Bibliography

Introduction

This document describes how modules are used in Jason. Modules in Jason allow the programmer to develop
agent programs into separate, independent, reusable and easier to maintain units of code. The introduction of
the notion of namespace to organize components such as beliefs and events has addressed the name-collision

problem providing interface and information hiding features for modules.

Below, we present the conceptual view of modules and namespaces that was implemented for Jason.
Examples are used to illustrate the use of these features. At the end of the document, we include some
bibliographical references for those interested in alternative ways of having modules in agent-oriented

programming languages (some of which have inspired the Jason implementation to some extent).

Concepts

A module is as a set of beliefs, goals, and plans, as a usual agent program, and every agent has one initial module
(its initial program) into which other modules can be loaded. We refer to the beliefs, plans, and goals within a
module as the mwodule components (cf. Figure 1).

Modularity is supported through the simple concept of namespaces, defined as an abstract container created to
hold a logical grouping of components. All components can be prefixed with an explicit namespace reference.
We write nsl: :color (box,blue) to indicate that the belief color (box, blue) is associated with
the namespace identified by ns1. Furthermore, note that the belief zoo: :color (seal,blue) is not the

same belief as office: :color (seal,blue), as they reside in different namespaces.

' Another view (more academic) of modules and namespaces for Jason was presented at EMAS@AAMAS 2016.

mailto:gusorh@gmail.com
http://www.das.ufsc.br/~jomi/
http://www.inf.pucrs.br/r.bordini/

Global Local
init

load | |
li A
* = 1
Module |&——"» Component Namespace
as550C
A
Belief Plan Goal

Figure 1. Proposed model for modularity.

Namespaces are either global or local. A global namespace can be used by any module; more precisely, the
components associated with a global namespace can be consulted and changed by any module program. A
local namespace can be used only by the module that has defined the namespace. Modules can share

components by means of a common global namespace.

We introduce the notion of abstract namespace of a module to denote a namespace whose name is undefined at
design-time, and will be defined at runtime when the module is loaded. To indicate that a component is in a
module's abstract namespace, the prefix is simply omitted, e.g., a belief written as taste (candy, good) is

in an abstract namespace and its actual namespace will be defined when the module is loaded.

The loader of a module interacts with it in two directions: the loader imports the components of the module

that are in global namespaces and the loader extends the modules by placing components in those namespaces.

Implementation

The basic syntactical construct of a Jason program is a literal, which as in logic programming has the form
p(t, .. ,t,), where p is the predicate (that can be strongly negated with the ~ operator), » 2 0, and each ¢,
denotes a term that can be either a number, list, string, variable, or a structure that has the same format of a
positive literal. We say then that each predicate p and structure term in a Jason program is a Jason identifier. For

instance, in a plan such as:
+!go (home) : forecast (sunny) <- walk to(0,0).

the Jason identifiers are: go, home, forecast, sunny, andwalk to.

Namespace Prefix

We have extended the syntax of the Jason identifiers to allow a namespace prefix:
<id> = [<wd>:] <jid>

where #id is a namespace identifier (an atom) and jid is used to denote the usual Jason identifier. For example,

a belief formula like count (0) can be written ns2: : count (0) to associate it with the namespace ns2.

Since Jason identifiers are used for beliefs and goals, by prefixing them with a namespace, these elements are
being scoped within a particular namespace.” Therefore, a plan written as:

+!'nsl::go(home) : ns2::forecast (sunny) <- +b.

will consider only an achievement-goal addition event + ! go (home) in the namespace ns1, and a belief
forecast (sunny) in namespace ns2; beliefs and goals in other namespaces are not relevant for this
plan.

Jason reserved keywords (e.g. source, atomic, self, tell, achieve, ...), strings and numbers are handled as

constants and are not associated with namespaces.

Loading

The module loading process involves associating every component in the abstract namespace of the module to
a concrete namespace, and then simply incorporating the module components into the agent that loaded the

module. Therefore, a namespace must be specified at loading time to replace the module’s abstract namespace.

When a module is loaded, its components, i.e., beliefs, plans and goals, are added into the belief base, plan

library and desires (i.e. added as goals) of the agent, respectively.

The agent initial module is loaded in what we call the defau/t namespace. This is a predefined global namespace
whose identifier is default. The components in the initial module are used as the initial belief base, plan

library, and goals for the agent.

Restricting access to local namespaces is done at loading time, using a name-mangling technique. This consists in
replacing every reference to a local namespace by an internally created namespace identifier. This is generated
in such a way that it is not a valid identifier in the Jason syntax (i.e., programmers cannot access such
namespaces). For instance, if ns2 denotes a local namespace, the loading process will rename a belief
ns2::color (box,blue) to #ns2::color (box,blue) where #ns2 is not a valid Jason identifier,
thus no developer can write a program that accesses this belief.

Terms within a literal are not changed when a module is loaded. For instance, when loading the belief

color (box,blue) in the namespace ns2, the belief ns2: : color (box,blue) is actually added (and
notns2::color(ns2::box, ns2::blue)). Terms can however be used with the namespace prefix,
asin .findall(C, ns2::color(_,C), L) thatwil consider only color/2 beliefs in namespace
ns2. Briefly, while predicates within module components (goals, belief and plans) without a namespace prefix
are in the abstract namespace, terms given as argument to predicates are in the default namespace. If we need to
force some term to be considered in the abstract namespace, we can prefix it with ": :". For instance,
.findall(C, ::color(,C), L) wilconsideronly color/2 beliefs in the namespace informed

when its module was loaded.

Environment interaction

Beliefs related to perception are placed in the default namespace, and thus also the corresponding events

(external events generated from perception). This solution keeps backward compatibility with previous source

* Plans ate also scoped within a namespace given that their triggeting events are based on beliefs and goals.

code, since the initial module is loaded in this default namespace (besides, it makes sense as all modules of an

agent may potentially need to have access to information about the state of the environment).

Operations

The following directives are available to support the use of modules and namespaces in Jason:

@® { include(<module> [, <namespace>]) }:loads the module <module> (an .asl file)
and its abstract namespace is associated to <namespace>. If the second argument is omitted, the
abstract namespace for <module> is the namespace of the module performing the include (and both
modules will thus share the namespace). For example, {include ("m.asl", ns2) } loads the
module "m.asl" using ns2 for its abstract namespace, while if the second argument had not been
given, the effect would be the same as the original Jason "include" directive whereby further
AgentSpeak code is simply included as if it was part of the file using the include directive.

® { namespace(<id> [, <type>]) }: this directive indicates the type of namespace
<1d>; the values for <t ype> can be either 1ocal or global.

@® { begin namespace (<id> [, <type>]) } .. { end }: this directive extends the
previous directive providing syntactic ‘sugar’ to facilitate the namespace association of components,

so that identifiers in the ... part are placed in namespace <id>.
And the following internal actions:

® .include (<module> [, <namespace>]):identical to the its homonymous ditective.

e .namespace(<atom>): succeeds if <atom> is a namespace identifier. It backtracks on all
global namespaces. For example, . findall (X, .namespace (NS) & NS::b(X, ::),
L) putin the list L all first terms of beliefs b/2 from all global namespaces, regardless of the second
term in belief b.

Note that the include directive is executed at parsing time (i.e. szatic loading) while the include internal action is

executed (from an intention) at run time (i.e. dynamic loading).
The operator =. . now supports four items in the list to include the namespace:

bob (10, "ola") [k::annot] =.. [NS,Functor,Terms,Annots]
NS -> default
Functor -> bob
Terms -> [10,"ola"]
Annots -> [k::annot]

Unification

Namespaces are taken into consideration in the unification process, for instance
nsl::bel(10) = ns2::bel(10)

fails (i.e. it does not unify, as the namespace is treated as part of the predicate name) since we are trying to
unify literals in different namespaces. Although we used the unification operator = in this example (and
below), it could just as well be the case that the agent has ns1: :bel (10) in its belief base and performed
the query ?ns2: :bel (10). Similarly, although the examples are based on literals, the same applies to

events. The event + ! n: : g will have as relevant plans, for instance, plans with the triggering event +!n: : g

or+!X::qg.
More examples:
bel (10)

n::bel(10)
bel (10)

= n::bel(10)
n::bel (10)

// unifies since both ate in the same namespace
// unifies since both are in the same namespace

// does not unify

Since variables can also be in a namespace, they allow us to further "play" with unification:

ns::
ns::
ns::
ns::

Variables can be used as the namespace prefix:

ns::
ns::

A

ns::bel (10)
de::bel (10)

B::bel (10)

// unifies and A -> bel(10)

// does not unify

// does not unify (unless the abstract namespace is ns)
// unifies and A -> bel(10)

// unifies and A -> B

// unifies and A -> bel(10), B -> ns
// unifies and A -> C, B -> ns
// unifies and A -> C, B -> the abstract namespace of A

Numbers and strings are in all namespaces by definition (we cannot define their namespaces):

A

ns::
N::A

// unifies and A -> 10
// unifies and A -> 10
// unifies and A -> 10, N -> default

It is important to notice that terms also have namespaces:

ns::
ns::
ns::
ns::
ns::

ns::

Examples

—_— — — — ~— ~—

(AU VA VR U (o)

// fails

// fails (the term a is not in the same namespace)

// unifies

// unifies and N -> ns, O -> k

// unifies and N -> ns, O -> k, X -> a

// fails, k::a does not unify with X, different namespaces

In this section, we illustrate how to use the features mentioned above by means of two examples. The first

example simply shows how to load a module and execute a plan in it. The second example demonstrates how

multiple instances of the same module can be exploited and also how different modules interact.

Factorial

In the following code, the module initial.asl uses the internal action . include to load the module
factorial.asl in the namespace fac and then adds two subgoals in this namespace. Since these
subgoals are posted in the fac namespace, they are handled by the module factorial.

The module factorial.asl provides functionality to print the factorial of a given number. This module
defines the /oca/ namespace priv (line 2) to encapsulate the functionality for computing the factorial (lines
3-8), so the beliefs it adds to memoize factorials and the plan to compute them are only accessible from within
this module (as illustrated in line 13) and will not intetrfere or clash with any other module's beliefs or plans.
The namespace of print factorial (line 12) is abstract and a concrete namespace is given when the
module is loaded. Because the namespace of print factorial is global (as defined by the loader), we
say that this module is exporzing plan Gp1.

1 !start. 1 // exports +!print factorial/l

2 2 {begin namespace (priv, local) }

3 +!start 3 factorial (0 ,1).

4 <- .include ("factorial.asl", fac):; 4

5 !fac::print factorial(7); 5 +?factorial (N,F) : N > 0

6 !fac::print factorial(5). 6 <- ?factorial (N -1, F1);

7 7 F =F1 * N;

8 8 +factorial (N, F) .

9 9 {end}

10 10

11 11 @pl

12 12 +!print factorial (N)

13 13 <- ?priv::factorial (N,F);

14 14 .print ("Factorial of ",N," is ",F).
initial.asl factorial.asl

Contract Net Protocol

This example shows how to implement the Contract Net Protocol (CNP) using modules. Agent Bob (see
code bob . asl) statically loads the module initiator.asl twice (lines 1-2), which endows it to start
CNP instances for tasks build (park) and build (bridge) (lines 4-5). In this implementation, each
CNP takes place in a different namespace to isolate the beliefs and events of each independent task allocation

process.
1 {include ("initiator.asl",hall)} 1 !'start ([fix (tv), fix (computer), fix (fridge)]) .
2 {include ("initiator.asl", comm) } 2
3 3 +4l!start([]).
4 'hall::startCNP(build(park)) . 4 +l!start([fix(T) |IR])
5 comm: :startCNP (build (bridge)) . 5 <- .include("initiator.asl",T);
6 6 .add_plan(
7 7 {+T::winner (W) <-
8 8 .print ("Winner to fix ",T," is ", W)
9 9 }) s
10 10 '1T::startCNP (fix (T)) ;
11 11 I'start (R) .
12 12
13 13
14 14
15 15

bob.asl alice.asl

Agent Alice starts multiple CNP’s. Therefore it dynamically loads one instance of module initiator.asl
for each CNP started (line 5). The functionality provided by the module initiator is extended by adding one plan
to the same namespace where the module is loaded (lines 6-9).

Company A participates in all CNPs by loading module participant in every namespace where it listen
that a CNP has started (note that the namespace in line 2 is a variable). Two beliefs are added into the
namespace where the module is loaded (lines 4-5), extending the module. The module uses these beliefs to

decide what tasks can be accepted and how much to bid (cf. lines 6-7 of participant.asl).

Company B plays the participant role only in CNPs started by agent Bob, and taking place in namespaces
hall or comm. When a CNP starts under these conditions, it loads the module participant.asl in the
corresponding namespace. The beliefs on lines 1-5 extend the functionality of the module by setting the
strategy for bidding and accepting tasks. Company B only accepts tasks for building and its bids depend on
the namespace in which the CNP is being carried on.

Further details are provided by comments in the sources below.

1 1 hall::price(build(_),300).

2 +N::cnpStarted[source (A)] 2 hall::acceptable(build()).

3 <- .include ("participant.asl", N); 3

4 +N::price(_, (33*math.random)+100) ; 4 comm::price(build(_),100).

5 +N::acceptable (fix(_)); 5 comm::acceptable (build()).

6 IN::joinCNP[source (A)]. 6

7 7 +N::cnpStarted[source (bob)]

8 8 .member (N, [hall, comm])

9 9 <- .include ("participant.asl", N);

10 10 IN::joinCNP[source (bob)].
company_A.asl company_B.asl

Module initiator encapsulates the agent functionality to start a CNP. Since local namespaces have to be
defined before their use, a forward declaration of the local namespace priv takes place at line 1. The rule on
lines 3-7 is private because it is added into a local namespace.

NP = NO + NR.

1 {namespace (priv,local)} //Forward definition

2

3 priv::all proposals received

4 :— .count(::introduction(participant) [source()],NP) & // number of participants
5 .count (::propose() [source()], NO) & // number of proposals received
o .count (::refuse[source()], NR) & // number of refusals received

5

8

9 //Starts a CNP
10 +!startCNP (Task)

11 <- .broadcast(tell, ::cnpStarted);

12 // 'this ns' is a reference to the namespace where this module was loaded
13 // in this example it is the namespace where the CNP is being performed
14 .print (" Waiting participants for task ",Task," in ",this ns,"...");

15 .wait (3000) ;

16 -+priv::state (propose) ;

17 .findall (A, ::introduction (participant) [source(A)],LP);

18 .print ("Sending CFP for ",Task," to ",LP);

19 .send (LP, tell, ::cfp(Task));

20 // the deadline of the CNP is now +15 seconds, so

21 // the event +!contract(this ns) is generated at that time
22 .at ("now +25 seconds", { +!priv::contract(this ns) }).

23

24 // if all proposals have been received, don't wait for the deadline
25 // receive proposals

26 +propose() : priv::state(propose) & priv::all proposals received
27 <- l!priv::contract (this ns).

28

29 // receive refusals

30 +refuse : priv::state(propose) & priv::all proposals received

31 <- l!priv::contract (this ns).

32

33 // to let the agent know the current state of the CNP
34 +?cnp state(S) <- ?priv::state(S).

35 +?cnp_state (none) .

36

37 {begin namespace (priv) }

38 +!contract (Ns) : state(propose) & not .intend(::contract())
39 <- —-+state(contract);
40 .findall (offer(Price,A), Ns::propose(Price) [source(A)],L);
41 .print ("Offers in CNP taking place in ",Ns," are ",L);
42 L \== [1;
43 .min(L,offer (WOf,WAq)) ;
44 +Ns: :winner (WAQ) ;
45 lannounce result (Ns,L);
46 -+state (finished) .
48
49 // nothing to do, the current phase is not 'propose'
50 +!contract ().
51
52 -!contract (Ns)
53 <- .print ("CNP taking place in ",Ns," has failed! (no proposals)").
54
55 +!announce result(,[]).
56 // award contract to the winner
57 +!announce_ result (Ns, [offer(,Aq)|T]) : Ns::winner (Ag)
58 <- .send(Ag,tell, Ns::accept proposal);
59 lannounce result (Ns,T) .
60 // announce to others
62 +!announce_ result (Ns, [offer(,Aq) |T])
63 <- .send(Ag,tell, Ns::reject proposal);
604 lannounce result (Ns,T) .
65 {end}
initiator.asl

// Participating in CNP
+!j0inCNP[source (A)]
<- .send(A,tell, ::introduction (participant)).

=W N

o 3 o u»

11
12
13
14
15
16
17
18
19
20
21

// Answer a Call For Proposal
+cfp (Task) [source (A)] : acceptable(Task)
<- ?price(Task, Price);
.send (A, tell, ::propose(Price));
+participating (Task) .

+cfp (Task) [source (A)] : not acceptable (Task)
<- .send(A,tell, ::refuse);

.println ("Refusing proposal for task ", Task, " from Agent ", A).

// Possibly results of my Proposal
+accept proposal : participating(Task)
<- .print("My proposal in ",this ns," for task ", Task," won!").
// do the task and report to initiator

+reject proposal : participating(Task)
<- .print ("I lost CNP in ",this ns," for task ",Task,".").

participant.asl

Properties

Namespaces and modules in Jason have the following properties:

syntax-based solution (no changes in the semantics of Jason)

flat scheme for namespaces (no hierarchy)

the same module can be loaded several times in different namespaces

naming clash solved by namespaces

isolation solved by local namespaces

information hiding solved by local namespaces

modules can be dynamically loaded (by the .include internal action) or statically loaded (by the include
directive)

the agent has a single "mind" (avoiding the schizophrenia of the sub-agent approach)

composition: several modules can be loaded in the same namespace to compose a more complex

solution

event consumption: external events should be consumed by plans in the default namespace and once
consumed by a plan cannot be used by others (but a default namespace plan can be used to captuer
the event and force copies of the event to be recreated for various other namespaces if needed); a side
effect: if two modules have plans for the same external event, one will get it and the other no, so the
order of loading is relevant in this case.

@ the functionality of modules can be extended and customized by adding plans and beliefs to them.

Open Problems

What is the best implementation for .exclude/.unload?

options (not exclusive):

1. it removes all plans from a namespace (say #7) -- no reference to the source code file
also the local namespaces created in the scope of #
also beliefs in #

also intentions from »

AP S

recursively remove also all namespaces used to load some module in the scope of #

6. modules have a predefined plan to clean it up (and by default does what options 1-4 suggest). This
plan can be called by the loader and can be overridden (as we do with KQML plans).

Bibliography

Paolo Busetta, Nicholas Howden, Ralph Ronnquist, and Andrew Hodgson. Structuring BDI agents in_functional
ctusters. In Nicholas R. Jennings and Yves Lesperance, editors, Intelligent Agents VI, Agent Theorties,
Architectures, and Languages (ATAL), 6th International Workshop, ATAL 99, Orlando, Florida, USA, July
15-17, 1999, Proceedings, volume 1757 of Lecture Notes in Computer Science, pages 277-289. Springer, 1999.

Lars Braubach, Alexander Pokahr, and Winfried Lamersdotf. Extending the capability concept for exible BDI agent
modnlarization. In Proceedings of the Third international conference on Programming Multi-Agent Systems,
ProMAS'05, pages 139-155, Berlin, Heidelberg, 2006. Springer-Vetlag.

Mehdi Dastani and Bas Steunebrink. Modularity in bdi-based mnlti-agent programming langnages. In Proceedings of
the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent
Technology - Volume 02, WI-IAT '09, pages 581-584, Washington, DC, USA, 2009. IEEE Computer
Society.

Michal Cap, Mehdi Dastani, and Maaike Harbers. Be/ief/ goal sharing BDI modules. In The 10th International
Conference on Autonomous Agents and Multiagent Systems - Volume 3, AAMAS '11, pages 1201-1202,
Richland, SC, 2011. International Foundation for Autonomous Agents and Multiagent Systems.

Neil Madden and Brian Logan. Modularity and compositionality in jason. In Lars Braubach, Jean-Pierre Briot, and
John Thangarajah, editors, Programming Multi-Agent Systems: 7th International Workshop, ProMAS 2009,
Budapest, Hungary, May 10-15, 2009. Revised Selected Papers, volume LNAT 5919, pages 237-253, Budapest,
Hungary, 2010. Springer, Springer.

Koen Hindrtiks. Modules as policy-based intentions: modular agent programming in goal. In Proceedings of the 5th
international conference on Programming multi-agent systems, ProMAS'07, pages 156-171, Berlin,
Heidelberg, 2008. Springer-Verlag.

M. Birna van Riemsdijk, Mehdi Dastani, John-Jules Ch. Meyer, and Frank S. de Boer. Goal-oriented modularity in
agent programming. In Proceedings of the fifth international joint conference on Autonomous agents and
multiagent systems,AAMAS '06, pages 1271-1278, New York, NY, USA, 2006. ACM.

Daniel N. Kiss and Bryan Logan. Jason+: Extension of the Jason agent programming language. Dissertation submitted
6th May 2016. School of Computer Science and Information Technology, University of Nottingham, England.

